Surface Reactions with Nonequilibrium Adsorption

PETER HARRIOTT

School of Chemical Engineering, Cornell University, Ithaca, New York

Rcccived November 10, 1970

The kinetics of competitive adsorption plus a bimolecular surface reaction are investigated for the case where Reactant A is far from adsorption-desorption equilibrium. The overall rate goes through a sharper than normal maximum with reactant pressure, giving a very large negative order to A in the region past the masimum.

actions, it is usually assumed that one step product. controls and that the other steps occur at nearly equilibrium conditions. If the slow step is the reaction between molecules of A and B which, together with Product C , are adsorbed on the same type of sites, the rate equation is

$$
r = k\theta_A \theta_B
$$

=
$$
\frac{kK_A K_B P_A P_B}{(1 + K_A P_A + K_B P_B + K_C P_C)^2}
$$
 (1)

If the slow step is the rate of adsorption of A, with equilibrium adsorption of B and C, the equation becomes

$$
r = kP_A(1 - \theta) = \frac{kP_A}{(1 + K_B P_B + K_C P_C)}.
$$
\n(2)

both allow for retardation by the product much smaller than the rate of removal of and the possibility of a negative reaction A by reaction. This means that θ_A , the fracand the possibility of a negative reaction A by reaction. This means that θ_A , the frac-
order for B. If A were weakly adsorbed and tion of surface covered by A during the reorder for B. If A were weakly adsorbed and tion of surface covered by A during the re-
B strongly adsorbed, the data might be action, is quite a bit smaller than the B strongly adsorbed, the data might be action, is quite a bit smaller than the fitted to either equation. Because of the equilibrium value for adsorption without fitted to either equation. Because of the equilibrium value for adsorption without similarity, it might seem that if two such reaction. This is likely to be the case for similarity, it might seem that if two such steps influence the overall rate, the apparent many reactions involving hydrogen, nitro-
reaction orders would always fall between gen, or oxygen, which are strongly chemireaction orders would always fall between gen, or oxygen, which are strongly chemi-
values predicted from the limiting cases. sorbed on metal catalysts and have very values predicted from the limiting cases. sorbed on metal catalysts and have very
However this is not a correct generalization. low desorption rates at typical reaction However this is not a correct generalization, low desorption rates at typical reaction
as will be shown by the following example temperatures. The adsorption and desorpas will be shown by the following example temperatures. The adsorption and desorp-
for reaction with nonequilibrium adsorption. tion rate constants for B were made quite for reaction with nonequilibrium adsorption.

compete for sites on the catalyst surface and where, to simplify the problem, hardly cupied by A.

In formulating models for catalytic re- any of the surface is covered by the

$$
A_g + s \frac{1}{2} A_s. \tag{3}
$$

$$
B_g + s \underset{4}{\overset{3}{\rightleftharpoons}} B_s. \tag{4}
$$

rate equation is
\n
$$
A_s + B_s \rightarrow C_s \longrightarrow C_g. \tag{5}
$$
\n
$$
A_s + B_s \rightarrow C_s \longrightarrow C_g.
$$

The net rate of adsorption for A and B is set equal to the surface reaction rate.

$$
r = k_1 P_A (1 - \theta_A - \theta_B) - k_2 \theta_A. \tag{6}
$$

$$
r = k_3 P_B (1 - \theta_A - \theta_B) - k_4 \theta_B. \tag{7}
$$

$$
r = k_{5} \theta_{A} \theta_{B}. \tag{8}
$$

 (2) for a number of cases in which the rate of Equations (6) , (7) , and (8) were solved These equations are similar in that they description of A was about the same or the allow for retardation by the product much smaller than the rate of removal of Consider the case where both reactants large to give nearly equilibrium coverage of B on the portion of the surface not oc-

Figure 1 shows how the rate varies with pressure of A for surface reaction constants of 1 to 100 times the desorption rate constant for A . The reaction is first order to A at low pressures, goes through a maximum, and is approximately -1 order at high pressures. At low pressures the rate is less than that based on equilibrium adsorption (Eq. 1), because the rate of adsorption of A becomes limiting, and at very high pressures, the finite rate of adsorption of B makes the rate slightly less than that based on equilibrium adsorption. The most interesting effect is the shift of the maximum to higher pressures and the fact that the rates can be higher than that predicted by Eq. (1). This effect is more pronounced for higher surface-rate constants or when the desorption of A is almost negligible, as for the cases shown in Fig. 2. Here the peak becomes quite narrow, and the reaction order for A is -2 to -6 in the steepest portions of the curves.

The strong negative effect of $P₄$ on the rate is explained by a rapid decrease in θ_B when the surface is nearly covered by A. To show this more clearly, the equations for adsorption, reaction and desorption of A are presented in Fig. 3 for arbitrary rate

FIG. 1. Comparison of reaction rate with rate based on equilibrium adsorption.

FIG. 2. Comparison of reaction rate with rate based on equilibrium adsorption.

constants. To simplify the problem, B was assumed to be in adsorption-desorption equilibrium with the surface not covered by A , which was practically true for most of the cases in Figs. 1 and 2. For a constant $P_{\scriptscriptstyle B}, \theta_{\scriptscriptstyle B}$ is then a certain fraction of $(1-\theta_{\scriptscriptstyle A}),$ which makes the surface reaction a quadratic function of θ_A , and the rate of adsorption of A a linear function of θ_A .

$$
r = k_{\mathfrak{s}} \theta_A \theta_B = k_{\mathfrak{s}} \theta_A \, \frac{K_B P_B (1 - \theta_A)}{(1 + K_B P_B)}.
$$
 (9)

$$
r_{\rm ads} = k_1 P_A (1 - \theta_A - \theta_B) = k_1 P_A (1 - \alpha)(1 - \theta_A).
$$
 (10)

FIG. 3. Graphical solution for θ_A and reaction rate.

The actual value of θ_A is determined by the intersection of the adsorption line with that for reaction plus desorption. The adsorption lines in Fig. 3 are for pressures that change by a factor of 1.5 between cases. This increase in P_A in the region past the maximum produces a large decrease in the reaction rate, corresponding to a reaction order of about -2 . If there were no desorption of A, the rate would decrease even more rapidly with P_A and would be zero at or above a critical pressure where the adsorption line no longer intersected the reaction curve. The surface would be completely covered with A at this point.

Negative reaction orders for hydrogen ranging from -1 to -3 have been found in several studies of the hydrogenolysis of ethane or propane (1).

These orders are not in accord with the usual Langmuir-Hinshelwood equation, and an equilibrium dissociation of the hydrocarbons on the surface has been suggested. However the dissociation would have to produce a hydrogen-free species to explain an order of -2 for ethane, which seems unlikely, and stronger negative effects would not be possible. The postulate of reaction with nonequilibrium adsorption offers an alternate explanation for these results. As shown in Figs. 1 and 2, the order would not be constant, though over a three to four-fold range in pressure, the change

might not be apparent. Figure 4 shows some of the data of Taylor, Sinfelt, and Yates for ethane hydrogenolysis over nickel catalysts (2). In most. cases, the apparent order to hydrogen becomes more negative at high pressures, which fits the theory of nonequilibrium adsorption better than the postulate of dissociation on the surface.

FIG. 4. Data of Taylor, Sinfelt, and Yates for cthane hydrogenolysis.

REFERENCES

- 1. BOND, G. C., "Catalysis by Metals," p. 396. Academic Press, New York, 1962.
- 8. TAYLOR, W. F., SINFELT, J. H., AND YATES, D. J. C., J. Phys. Chem. 69, 3857 (1965).